Pimlico Academy – Curriculum map and rationale – Chemistry (Key Stage 5) The chemistry A-level at Pimlico follows the OCR B Chemistry (Salters) specification. In contrast to many traditional 'topic-based' approaches, Salters Chemistry is 'context-led'. Chemical concepts are introduced around contemporary issues in chemistry eg climate change or the development of medicines. Students study the chemistry in a spiral way so that chemical ideas, introduced in an early topic, are reinforced later. The 'drip-feed' approach to teaching and learning chemical principles allows candidates to revisit a particular topic several times during the course, each time taking their knowledge and understanding a step further. The units studied and their order are given below: | | Term 1+2 | Term 3+4 | Term 5+6 | |----------------------|---|---------------------|---| | YEAR 12
Chemistry | Elements of life • Atomic structure • Amounts of substances • Light and electrons • Bonding • Periodicity • Periodic table - Group 2 • Techniques - titration Developing Fuels • Organic chemistry – alkanes and alkenes • Enthalpy changes - combustion • Catalysts • Alternatives to fossil fuels | Elements of the sea | What's in a medicine Spectroscopy (IR, visible, mass) Organic chemistry - Alcohols, phenols and carboxylic acids Techniques - Preparation of a liquid and solid organic molecule, TLC, melting point Organic chemistry - esters | | | Chemical industry Nitrogen chemistry Equilibrium in industry Rate of a reaction – factors affecting it Half lives | Oceans | Colour by design Organic chemistry – Arenes, azo dyes, fats and oils Techniques – glc Colour chemistry | |----------------------|---|---|---| | YEAR 13
Chemistry | Polymers and life Spectroscopy (NMR) Organic chemistry – amino acids, proteins, polyamides, DNA and RNA Rate of a reaction – enzymes | Developing metals Redox – electrochemical cells, rusting Periodic table – transition metals – including complexes Techniques - Colorimetry | |